Презентация на тему магические квадраты. Познание характера человека

  • Дата: 26.11.2023

Презентацию подготовил Кузнецов А 9А класс Школа №27

Слайд 2: 1

Магический квадрат – это квадрат, состоящий из п столбцов и п строк, в каждую клетку которого вписано число. Числа в квадрате размещены так, что в каждом горизонтальном, вертикальном и диагональном ряду получается одна и та же сумма.

Слайд 3

Старейший в мире магический квадрат представлен выше. Черными кружками в этом квадрате изображены четные (женственные) числа, белыми – нечетные (мужественные) числа. В обычной записи он не так эффектен: 6 1 8 7 5 3 2 9 4

Слайд 4: Магический квадрат 5 порядка

Доказано, что магических квадратов 5 порядка более 13 млн. Магический квадрат 5 порядка

Слайд 5: Магический квадрат Пифагора

Пифагор создал метод построения квадрата, по которому можно познать характер человека, состояние его здоровья и его потенциальные возможности, раскрыть достоинства и недостатки.

Слайд 6: Магический квадрат Дюрера

В её правом верхнем углу размещён магический квадрат 4 порядка. Сумма чисел каждого ряда равна 34. Магический квадрат Дюрера


Слайд 7: Свойства магического квадрата А.Дюрера

В Европу магические квадраты проникли лишь в начале XV века. A в начале XVI века один из них был увековечен выдающимся немецким художником, гравером и немного математиком А. Дюрером в его лучшей гравюре «Меланхолия» (1514 г.). Дюрер воспроизвел на гравюре (в несколько измененном виде) тот самый магический квадрат, составленный из 16 чисел. 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 Очарование этого магического квадрата не только в постоянстве сумм, которое является лишь его основным свойством. Подобно тому, как в истинно художественном произведении находишь тем больше новых привлекательных сторон, чем больше в него вглядываешься, так и в этом произведении математического искусства таится немало красивых свойств, помимо основного.

Слайд 8: Свойства магического квадрата А.Дюрера

Если все столбцы магического квадрата сделать строками, сохраняя их чередование, то есть - числа первого столбца в той же последовательности расположить в виде первой строки, числа второго столбца в виде второй строки и т.д., то квадрат останется магическим с теми же его свойствами. Суммы чисел вдоль строк и столбцов, конечно, не изменились, но суммы чисел вдоль диагоналей стали иными, не равными 34. Магический квадрат потерял часть своих основных свойств, стал «неполным» магическим квадратом (полумагическим квадратом). Продолжая обменивать местами строки и столбцы квадрата, вы будете получать все новые и новые магические и полумагические квадраты из 16 чисел. 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 При обмене местами отдельных строк или столбцов магического квадрата некоторые из вышеперечисленных его свойств могут исчезнуть, но могут и все сохраниться и даже появиться новые. Например, поменяем, местами первую и вторую строки данного квадрата, получим то, что показано на рисунке справа: Свойства магического квадрата А.Дюрера

Слайд 9: Квадраты порядка, кратного четырем

Для составления какого-либо магического квадрата порядка n=4,8,12,4k удобна, например, такая простая схема: Разместить числа в клетках заданного квадрата в порядке их возрастания (в натуральном порядке); Выделить по углам заданного квадрата четыре квадрата со сторонами n/4 и в центре один квадрат со стороной n/2 В пяти выделенных квадратах обменять местами числа, расположенные симметрично относительно центра заданного квадрата; это значит, что в натуральном расположении чисел квадрата четвертого порядка надо поменять местами 1 и 16, 4 и 13, 6 и 11, 7 и 10. Квадраты, составленные по указанной схеме, будут всегда магическими симметрическими. 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

10

Последний слайд презентации: Магические квадраты: Эт Все

Материал взят на просторах интернета,а в частности на сайте ru.wikipedia.org

Цели и задачи.Цели:
1. Познакомиться с магическими квадратами.
2. Узнать историю возникновения квадратов.
3. Научиться правильно и быстро заполнять магические квадраты.
Задачи:
1. Изучить историю возникновения и развития магических
квадратов;
2. Изучить свойства магических квадратов;
3. Познакомиться с основными методами построения
магических квадратов.

Что такое «магический квадрат»? Магическим квадратом называется квадратная таблица, заполненная натуральными числами, суммы которых по в

4
9
2
3
5
7
8
1
6
Порядок магического квадрата.
Слово «порядок» означает в данном случае число клеток на одной
стороне квадрата. Квадрат 3 3 имеет третий порядок, а квадрат 5 5 –
пятый, и т.д.

История возникновения магических квадратов.
Название «магические» квадраты получили от арабов, которые усмотрели
в их свойствах нечто мистическое и потому принимали квадраты за
своеобразные талисманы, защищавшие тех, кто их носит, от многих
несчастий.
Магические квадраты возникли в глубокой древности в Китае. Вероятно,
самым «старым» из дошедших до нас магических квадратов является таблица
Ло Шу (ок. 2200 г. до н. э.). Она имеет размер 3x3 и заполнена натуральными
числами от 1 до 9. В этом квадрате сумма чисел в каждой строке, столбце и
диагонали равна 15.
Согласно одной из легенд, прообразом стал узор украшавший панцирь
огромной черепахи.

Разновидности магических квадратов.

Магический квадрат 3 порядка.
Сумма чисел в каждом ряду 15

Магический квадрат 4 порядка.
Сумма чисел в каждом ряду 34.
4
5
14
11
1
15
8
10
16
2
9
7
13
12
3
6

Магический квадрат 5 порядка.
Сумма чисел в каждом ряду 65.
11
24
7
20
3
4
12
25
8
16
17
5
13
21
9
10
18
1
14
22
23
6
19
2
15

Каждый элемент магического квадрата называется
клеткой. Квадрат, сторона которого состоит из n
клеток, содержит n² клеток и называется квадратом
n-го порядка. Например 3 клетки квадрат 3 –го
порядка, 4 клетки –квадрат 4 порядка, и т.д. В
большинстве магических квадратов используются
первые
последовательные натуральные чисел.
Сумма S чисел, стоящих в каждой строке, каждом
столбце и на любой диагонали, называется
постоянной квадрата и равна S = n(n²+1)/2. Для
квадрата 3-го порядка S = 15, 4-го порядка – S = 34,
5-го порядка – S = 65.

Магический квадрат Дюрера

В начале 16в. знаменитый немецкий художник Альбрехт Дюрер
увековечил магический квадрат в искусстве, изобразив его на
гравюре «Меланхолия» . Квадрат Дюрера имеет размер 4 х 4 и
составлен из шестнадцати первых натуральных чисел, сумма
которых в каждой строке, столбце и на диагонали равна 34.

Применение в жизни.

Традиционной сферой применения магических квадратов
являются талисманы. К примеру, талисман Луны обладает
определенными свойствами: предохраняет от кораблекрушения и
болезней, делает человека любезным, способствует предотвращению
дурного намерения, а так же укрепляет здоровье. Его гравируют на
серебре в день и час Луны.
Судоку: японские головоломки. Эту игру, также известную как
магический квадрат придумал в 1783 году швейцарский математик
Леонард Эйлер.
Судоку (яп. «су» - число, «доку» - рядом, стоящее отдельно) –
японские числовые головоломки, где в квадрате 9х9 клеток нужно
расставить числа от 1 до 9 особым образом.
В настоящее время судоку широко распространены за пределами
Японии: их любят разгадывать как взрослые, так и дети по всему
миру.

Практическая часть.

Задача 1.
Впиши в пустые прямоугольники
недостающие числа от 1 до 16 так, чтобы в сумме по
всем столбикам и строкам и обеим диагоналям
получилось число 34.
Ответ:
5
13
3
6
1
9
11
8
10
5
2
13
3
16
7
12
6
9
14
1
15
4

Заключение.

В наше время магические квадраты продолжают
привлекать
к
себе
внимание
любителей
математических игр и развлечений. Возросло число
книг по занимательной математике, в которых
содержатся головоломки и задачи, связанные с
необычными квадратами. Для их успешного решения
требуются не столько специальные знания, сколько
смекалка
и
умение
подмечать
числовые
закономерности. Решение таких задач послужит
прекрасной «гимнастикой для ума».

Практическое использование получили не сами
магические квадраты, а методы, и целые разделы
современной математики, которые возникли и
развивались, благодаря решению задач составления и
анализа свойств магических квадратов.
Как и много веков назад, волшебные квадраты сейчас
используют только современные «маги», астрологи и
нумерологии.

Выводы.

1. Магические квадраты – это нечто удивительное,
интересное и увлекательное.
2. Заполнять магические квадраты несложно, но
необходимо знать некоторые правила.
3. Главными чертами магических квадратов являются не
только ясность, чёткость и логика, но и эстетичность,
стройность и красота.
Из полученной презентации мы узнали разновидности
магических квадратов, историю их возникновения, а также
применение в современном мире.

Список литературы.

1. Трошин В.В.. Магия чисел и фигур. М.: - ООО
«Глобус», 2007.
2. Энциклопедия для детей. – М.: Издательское
объединение «Аванта», 2003.
3. Сарвина Н.М. Неожиданная математика //
Математика для школьников 2005, №4
4. Файнштейн В. А. Заполним магический квадрат
// Математика в школе, 2000, №3
5. Интернет

Располагая числа правильными рядами, один под другим, в случае удачи можно, складывая их слева направо и сверху вниз, каждый раз получать одно и то же число. Если разделить числа линиями так, что каждое из них оказалось в отдельной клетке, как птицы в доме птицелова, то получится квадрат, населенный числами, неизвестно что сулящий его владельцу, но, конечно, обладающий магической силой.


Магический, или волшебный квадрат это квадратная таблица, заполненная числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n(n2 + 1)/2.


Страна, в которой был впервые придуман магический квадрат, точно неизвестна, неизвестен век, даже тысячелетие нельзя установить точно. Первые упоминания о магических квадратах были у древних китайцев. Согласно легенде, во времена правления императора Ю (ок до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы и эти знаки известны под названием Ло-шу и равносильны магическому квадрату.


В древности магические квадраты очень уважали и приписывали им различные мистические свойства. Говорят, если надо было решиться на какое-то опасное дело, их с магическими целями рисовали на бумажке и съедали. Такое же кушанье предлагали в качестве панацеи от всех болезней. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы.


Магических квадратов 2*2 не существует. Существует единственный магический квадрат 3*3, так как остальные магические квадраты 3*3 получаются из него либо перестановкой строк или столбцов либо путем поворота исходного квадрата на 90º или на 180° таких квадратов 8.




Магический квадрат 4×4, изображённый на гравюре Альбрехта Дюрера «Меланхолия I», считается самым ранним в европейском искусстве. Два средних числа в нижнем ряду указывают дату создания картины (1514). гравюреАльбрехта Дюрера1514 Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате (), в квадрате из угловых клеток (), в квадратах, построенных «ходом коня» (и), в прямоугольниках, образованных парами средних клеток на противоположных сторонах (и). Большинство дополнительных симметрий связано с тем, что сумма любых двух центрально симметрично расположенных чисел равна 17.


Квадрат Дюрера имеет размер 4 х 4 и составлен из шестнадцати первых натуральных чисел, сумма которых в каждой строке, столбце и на диагонали равна 34. Оказывается, 34 равны и суммы других четверок чисел: расположенных в центре, в угловых клетках, по бокам центрального квадрата а также образующих четыре равных квадрата, на которые можно разделить исходный квадрат








Бенджамин Франклин составил квадрат 16×16 который помимо наличия постоянной суммы 2056 во всех строках, столбцах и диагоналях имел еще одно дополнительное свойство. Если вырезать из листа бумаги квадрат 4×4 и уложить этот лист на большой квадрат так, чтобы 16 клеток большего квадрата попали в эту прорезь, то сумма чисел, появившихся в этой прорези, куда бы мы ее не положили, будет одна и та же – 2056.


Составление Магического квадрата Начертив квадрат, разграфлённый на девять клеток, пишем по порядку числа от 1 до 9, располагая их косыми рядами по три в ряд, как показано на рисунке. Числа, стоящие вне квадрата, вписываем внутрь его так, чтобы они примкнули к противолежащим сторонам квадрата (оставаясь в тех же столбцах или строках, что и раньше)


Магического квадрата Пифагора Великий ученый Пифагор, считал, что всем на свете управляют числа. Поэтому сущность человека заключается тоже в числе - дате рождения. Во времена Пифагора магические квадраты на каждого человека создавались индивидуально с помощью сложения и вычитания некоторых чисел в дате его рождения.


Магические квадраты привлекают к себе внимание не только специалистов, но и любителей математических игр. За последнее столетие значительно возросло число книг по занимательной математике, в которых содержатся головоломки и задачи, связанные с необычными квадратами. Для их успешного решения требуются смекалка и умение подмечать числовые закономерности. Решение таких задач не только доставит удовольствие тем, кто интересуется математикой, но и послужит прекрасной «гимнастикой для ума».

Аристеев Сергей

Данная работа отвечает на вопросы: что такое магические квадраты и как его построить?. Дана легенда о магическом квадрате. Перечислены различные способы построения магичнских кавдратов: метод террас, метод квадратных рамок, метод Рауз-Болла, метод Делаира. Дана прктическая работа по составлению магических квадратов

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Магические квадраты Работа Аристеева Сергея, ученика 5 класса МКОУ " Камышовская ООШ" Лиманского района Астраханской области Руководитель Горяева Зоя Эрднигоряевна, учителя математики с.Камышово, 2013 г. «Составление магических квадратов представляет собой превосходную умственную гимнастику, развивающую способность понимать идеи размещения, сочетания и симметрии ». Леонард Эйлер

ответить на вопрос: что такое магический квадрат и как его построить. Цель проекта: Задачи проекта: Изучить литературу по данному вопросу. Узнать историю магических квадратов. Научиться строить магические квадраты различными способами.

Постановка проблемы Легенда о магическом квадрате Как составлять магические квадраты Правило « ло -шу» Метод Рауз - Болла Метод террас Метод квадратных рамок Метод Д елаира или метод латинских квадратов Заключение. Литература Содержание

Расставьте натуральные числа от 1 до 9 т ак, чтобы сумма чисел столбцов и строчек была одинаковой. Чтобы решить эту задачу обратимся к истории. Постановка проблемы

В китайской древней книге «Же-ким» («Книга перестановок ») приводится легенда о том, что император Ню, живший 4 тысячи лет назад, увидел на берегу реки священную черепаху. На ее панцире был изображен рисунок из белых и черных кружков. Если заменить каждую фигуру числом, показывающим, сколько в ней кружков, получится такая таблица: Легенда о магическом квадрате

У этой таблицы есть замечательное свойство. Сложим числа первого столбца: 4 +3 + 8=15. Тот же результат получится при сложении чисел второго, а также третьего столбцов. Он же получается при сложении чисел любой из трех строк. Т от же ответ 15 получается, если сложить числа каждой из двух диагоналей: 4+5+6=8+5+2=15. Наверное, эту легенду китайцы придумали, когда нашли расположение чисел от 1 до 9 со столь замечательным свойством. Рисунок они назвали « Л о-шу » и стали считать его магическим символом и употреблять при заклинаниях. Поэтому сейчас любую квадратную таблицу, составленную из чисел и обладающую таким свойством, называют магическим квадратом.

Числовой квадрат называют магическим, если суммы S каждого горизонтального ряда, каждого вертикального ряда и обеих диагоналей одинаковы. Числовым квадратом порядка n, где n – натуральное число, будем называть квадрат разбитый на клеток, на которых размещается натуральные числа от 1 до Что называется магическим квадратом?

К вадраты можно получить из « ло -шу», либо поворачивая квадрат вокруг центра на 90°, 180° или 270°, либо зеркально отражая его. Если уже найден какой-нибудь магический квадрат, то из него можно описанными выше методами (поворотами и зеркальными отражениями) получить еще 7 магических квадратов. Новые магические квадраты получают: методом террас методом квадратных рамок методом Делаира, или методом латинских квадратов Как составляют магические квадраты?

Магический квадрат « ло -шу» можно найти, не прибегая к перебору одной за другой всех расстановок 9 цифр в 9 клетках (число таких расстановок равно 362 880). Будем рассуждать так. Сумма всех чисел от 1 до 9 равна: 1+2+3+4+5+6+7+8+9=45. Значит, в каждой строке и в каждом столбце сумма чисел должна равняться: 45:3=15. Но если просуммировать все числа во вторых столбце и строке и в обеих диагоналях, то каждое число войдет один раз, за исключением центрального, которое войдет четырежды. Значит, если обозначить центральное число через х, то должно выполняться равенство 4-15= = Зх + 3-15. Отсюда х=5, то есть в центре таблицы должно стоять число 5. Правило « ло -шу»

Несложно написать магический квадрат четвертого порядка: для этого запишем числа от 1 до 16 в квадрат по порядку. теперь поменяем местами числа, стоящие в противоположных углах всего квадрата и внутреннего квадратика: Метод Рауз-Болла 1 5 2 3 7 9 10 11 6 13 4 16 12 8 14 15 16 13 4 1 11 10 7 6 16 2 3 13 5 9 4 14 15 1 8 12 11 10 7 6

Инструкция При диагонали соединяют не только углы квадрата, но и середины его сторон, то есть диагонали проводятся в четырёх угловых квадратах 4х4 (см. рис.); взаимно симметричных пар чисел, которые надо поменять местами, будет шестнадцать: 1-64, 10-55, 19-46, 28-37, 8-57, 15-50, 22-43, 29-36, 4-61, 5-60, 11-54, 14-51, 18-47, 23-42, 25-40, 32-33. Построение методом Рауз-Болла магического квадрата восьмого порядка

Готовый магический квадрат восьмого порядка, построенный методом Рауз-Болла 1 2 2 3 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Математики изобрели несколько методов построения магических квадратов Построение магического квадрата методом террас, который применяется для построения магических квадратов нечётного порядка: пятого, седьмого и т. д. Рассмотрим его на примере магического квадрата 3 порядка. Алгоритм С четырёх сторон к исходному квадрату 3х3 добавляются террасы. В полученной фигуре располагают числа от 1 до 9 в естественном порядке косыми рядами снизу вверх. Числа в террасах, не попавшие в квадрат, перемещаются как бы вместе с террасами внутрь него так, чтобы они примкнули к противоположным сторонам квадрата (числа, не попавшие в заштрихованный квадрат, сдвигаем на n=3 единицы: 1 – вниз, 3 – влево, 9 – вверх, 7 – вправо). Итак, рассмотрим метод террас, заполнения магического квадрата нечётного порядка на примере квадратов порядка 3 . Записываем числа следующим образом: числа, не попавшие в заштрихованный квадрат, сдвигаем на n=3 единицы: 1 – вниз, 3 – влево, 9 – вверх, 7 – вправо. Получаем магический квадрат 3 3 . Сумма чисел = 15 . МЕТОД ТЕРРАС 1 4 2 7 5 3 8 6 9 4 9 2 3 5 7 8 1 6

Сейчас построим с вами магический квадрат пятого порядка, используя метод террас. Будем заполнять квадрат по шагам, по алгоритму. 1. С четырёх сторон к исходному квадрату 5х5 добавлены террасы. В полученной фигуре расположим числа от 1 до 25 в естественном порядке косыми рядами снизу вверх, как в примере с квадратом третьего порядка. 2. Числа, не попавшие в выделенный квадрат, сдвигаем на n=5 единиц: 1,2,6 – вниз, 4,5,10– влево, 24,25,20 – вверх, 16,21,20 – вправо. Получаем: Построение магического квадрата n=5

Практическая работа. 1 6 2 11 7 3 16 12 8 4 21 17 13 9 5 22 18 14 10 23 19 15 24 20 25 11 24 7 20 3 4 12 25 8 16 17 5 13 21 9 10 18 1 14 22 23 6 19 2 15

методом террас можно построить не только традиционный магический квадрат нечётного порядка, но и квадрат, заполненный любыми другими числами, лишь бы разность между каждым последующим и предыдущим числом была постоянной. Так, на рисунке вы видите нетрадиционный магический квадрат пятого порядка, заполненный чётными числами от 2 до 50, построенный методом террас.

6 32 18 44 30 40 16 42 28 4 14 50 26 2 38 48 24 10 36 12 22 8 34 20 46 На рисунке вы видите нетрадиционный магический квадрат пятого порядка, заполненный чётными числами от 2 до 50, построенный методом террас.

Магическим квадратом чётно-чётного порядка называется квадрат порядка n=4·m (m=1,2,3…), то есть порядок такого квадрата делится на 4. Для магических квадратов четно-четного порядка применяется метод квадратных рамок. Алгоритм На матричное поле (с изображённым на нём исходным квадратом 8х8) наносятся квадратные рамки со стороной в два раза меньшего размера, чем сторона исходного квадрата (см. рис) с шагом в одну клетку по диагонали (или две клетки по строкам и столбцам). Затем по линиям рамок расставляются числа от 1 до 2n по порядку, начиная с левого верхнего угла исходного квадрата, причём первая рамка обходится по часовой стрелке, вторая рамка начинается с верхней свободной справа клетки квадрата и обходится против часовой стрелки и т. д. Числа, не попавшие в квадрат, переносятся внутрь его так, чтобы они примкнули к противолежащим сторонам квадрата. Готовый магический квадрат изображён на рис. Метод квадратных рамок.

9 1 2 3 4 5 6 7 8 10 11 13 12 14 15 16 17 18 19 21 20 22 23 24 25 26 27 28 29 30 31 32 33

4 5 3 6 2 21 20 7 1 22 19 8 16 23 36 37 18 9 24 15 35 38 10 17 25 34 14 53 52 11 39 32 33 26 54 13 12 51 31 40 48 55 27 30 50 41 56 47 28 29 42 49 57 46 43 64 58 45 44 63 59 62 60 61

Готовый магический квадрат 8-порядка

Определение. Обобщённым латинским квадратом порядка n называется квадратная таблица размером n· n, среди элементов которой различными будут только n штук, и любой из n различных элементов встречается ровно n раз внутри этой таблицы. Описание метода построения: 1 этап. Строим обобщённый латинский квадрат порядка n следующим образом: каждая строка нижней половины квадрата заполняется путём последовательного чередования чисел i и n-i-1, где i – порядковый номер строки (строки нумеруются снизу вверх целыми числами от 0 до n-1); верхняя половина квадрата получается из нижней отражением относительно вертикальной оси симметрии. 2 этап. Строим второй обобщённый латинский квадрат из первого. Для этого надо повернуть построенный на первом этапе квадрат на 90 градусов по часовой стрелке. Замечу, что полученные таким образом два латинских квадрата будут ортогональными, но я не стала давать определение ортогональных латинских квадратов, потому что для понимания представленного метода построения это не имеет значения. 3 этап. Строим совершенный квадрат следующим образом. Обозначим элементы первого латинского квадрата элементы второго латинского квадрата – , тогда каждый соответствующий элемент совершенного квадрата получается по формуле: n + + 1 Построение магического квадрата методом Делаира, или методом латинских квадратов.

Первый Второй Магический латинский квадрат латинский квадрат квадрат четвёртого ттр порядка 2 1 2 1 1 3 0 3 0 1 2 1 2 0 3 0 3 0 1 3 2 3 2 0 1 0 1 3 2 3 2 0 1 9 6 12 7 16 3 13 2 5 10 8 11 4 15 1 14 Для нижней части квадрата: п ервая строка: i = 0, 4-i- 1= 4-0-1=3. Числа 0 и 3 чередуются Вторая строка: i =2, 4-2-1=1 . Числа 2 и 1 чередуются. Для верхней части квадрата симметрично отражаем числа нижней части (по стрелкам). i = 3 i = 2 i = 1 i = 0 Получили из первого квадрата поворотом на 90°по часовой стрелке. Получили по формуле =2·4+0+1=9 = 1·4+1+1=6 = 2·4+3+1=12 = 1·4+2+1=7 = 3·4+3+1=16 = 0·4+2+1=3 = 3·4+0+1=13 и тд 1 2 3 4 1 2 3 4

Возникновение магических квадратов относится к глубокой древности. Наиболее ранние сведения о них содержатся, по-видимому, в китайских книгах, написанных в IV - V вв. до н. э. Из дошедших до нас древних магических квадратов самым «старым» является таблица Ло-шу (2200 до н. э.). Следующие по времени сведения о магических квадратах дошли до нас из Индии и Византии. В Европе изображение магических квадратов впервые встречается на гравюре «Меланхолия» немецкого художника Альбрехта Дюрера (1514). Этот магический квадрат состоит из 16 клеток: 4 строк и 4 столбцов, заполненных натуральными числами от 1 до 16. В нем сумма чисел по каждой строке, каждому столбцу и двум диагоналям равна 34. Средние числа в нижней строке (15 и 14) означают дату 1514 - год издания этой гравюры А. Дюрера. Способами составления магических квадратов занимались многие математики: в XVI в. А. Ризе и М. Штифель, в XVII в. А. Кирхер и Баше де Мезериак. Теорией магических квадратов занимался французский математик Делаир. Леонард Эйлер придумал метод шахматного коня для построения некоторых магических квадратов. Теория магических квадратов ни в коей мере не может считаться завершённой. До сих пор неизвестен общий метод построения всех магических квадратов и неизвестно их число.

Толковый словарь математических терминов. О.В. Я. В. Успенский Избранные математические развлечения. - Сеятель, 1924. Б. А. Кордемский Математическая смекалка. - М.: ГИФМЛ, 1958. - 576 с. М. М. Постников Магические квадраты. - М.: Наука, 1964. Н. М. Рудин От магического квадрата к шахматам. - М.: Физкультура и спорт, 1969. Е. Я. Гуревич Тайна древнего талисмана. - М.: Наука, 1969. М. Гарднер Математические досуги. - М.: Мир, 1972. Энциклопедический словарь юного математика. - М.: Педагогика, 1989. Ю. В. Чебраков Магические квадраты. Теория чисел, алгебра, комбинаторный анализ. - СПб.: СПб гос. техн. ун-т, 1995. Ю. В. Чебраков Теория магических матриц. - СПб., 2008. М. Гарднер Глава 17. Магические квадраты и кубы // Путешествие во времени. - М.: Мир, 1990.Шахматный подход ЛИТЕРАТУРА