Презентация на тему "свойства тригонометрических функций". Тригонометрические функции Тригонометрические функции и их свойства презентация

  • Дата: 17.03.2024

«Тригонометрические функции »

«Скажи мне, и я забуду, Покажи мне, и я запомню, Вовлеки меня, и я научусь». (Китайская пословица)

Учитель математики

Самолысова Т.В.

МБОУ Страшевичская СОШ







График, какой функции изображен на рисунке:

3)y = tg x 4)y = ctg x


«Тригонометрические функции» нужны в каждой профессии.»

1. Сварщики (При подготовке металла к сварке и резке)

2. Электрики (При изучении электромагнитных волн – гармонические колебания)

3. Автомеханики (При изучении балансировки колес, резонансных систем автомобиля)

4. Мастера отделочных работ (При креативной покраске стен)


Автомеханики. Дан график колебаний поршня двигателя автомобиля. Определить период колебания (T). График какой функции изображён на рисунке?


Электромонтер.

Дан график колебаний в колебательном контуре радиопередатчика. Определить напряжение (U) и период колебания (T). График какой функции изображён на рисунке?


« Математику нельзя изучать, наблюдая, как это делает сосед » (А. Нивен)


1)Найти область определения функции:

2)Найти множество значений функции:

y=12sinx - 5cosx

3)Найти наименьший положительный период функций

Решение задач


Решение задач

Построить графики функций:


Решить графически неравенство cos x ≤ sin x

Ответ: П/4+2Пn≤X≤5П/4+2Пn, n  Z


Самостоятельная работа

Счастливая случайность выпадает лишь на долю подготовленных умов Луи Пастер


Мышление начинается с удивления Аристотель


Тригонометрия в ладони


На экране физических приборов.


Движение по синусоиде

Данный график часто используется в жизни. В частности есть даже такое выражение движение по синусоиде.


В строительстве


Синусоиду можно встретить в природе


Подведение итогов

Стали выше еще на одну ступеньку в изучении математики

Нашли связь между ………….. И …………….

Повторили …………….


Домашнее задание

1. Составить кроссворд по данной теме.

2.Найдите период функции y = 3*cos (x + π /4)

3. Построить график функции у = cos(х + π/4) + 1

Графики тригонометрических функций Функция у = sin x, ее свойства Преобразование графиков тригонометрических функций путем параллельного переноса Преобразование графиков тригонометрических функций путем сжатия и расширения Для любознательныхДля любознательных…




Тригонометрические функции3 Свойства функции у = sin x 5. Промежутки знакопостоянства: У>0 при х (0+2 n; +2 n), n Z У 0 при х (0+2 n; +2 n), n Z У"> 0 при х (0+2 n; +2 n), n Z У"> 0 при х (0+2 n; +2 n), n Z У" title="тригонометрические функции3 Свойства функции у = sin x 5. Промежутки знакопостоянства: У>0 при х (0+2 n; +2 n), n Z У"> title="тригонометрические функции3 Свойства функции у = sin x 5. Промежутки знакопостоянства: У>0 при х (0+2 n; +2 n), n Z У">










Тригонометрические функции8 Преобразование графиков тригонометрических функций График функции у = f (x+в) получается из графика функции у = f(x) параллельным переносом на (-в) единиц вдоль оси абсцисс График функции у = f (x)+а получается из графика функции у = f(x) параллельным переносом на (а) единиц вдоль оси ординат












1) вдоль оси ординат График функции у = k f" title="тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f" class="link_thumb"> 14 тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f (x) получается из графика функции у = f(x) путем его сжатия в k раз (при 0 1) вдоль оси ординат График функции у = k f"> 1) вдоль оси ординат График функции у = k f (x) получается из графика функции у = f(x) путем его сжатия в k раз (при 0"> 1) вдоль оси ординат График функции у = k f" title="тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f"> title="тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f">




1) вдоль оси абсцисс График функции у = f (kx) " title="тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) " class="link_thumb"> 16 тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) получается из графика функции у = f(x) путем его растяжения в k раз (при 0 1) вдоль оси абсцисс График функции у = f (kx) "> 1) вдоль оси абсцисс График функции у = f (kx) получается из графика функции у = f(x) путем его растяжения в k раз (при 0"> 1) вдоль оси абсцисс График функции у = f (kx) " title="тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) "> title="тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) ">




Тригонометрические функции18 Преобразование графиков тригонометрических функций путем сжатия и растяжения Графики функций у = -f (kx) и у=-k f(x) получаются из графиков функций у = f(kx) и y= k f(x) соответственно путем их зеркального отображения относительно оси абсцисс синус – функция нечетная, поэтому sin(-kx) = - sin (kx) косинус –функция четная, значит cos(-kx) = cos(kx)






Тригонометрические функции21 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx+b) получается из графика функции у = f(x) путем его параллельного переноса на (-в/k) единиц вдоль оси абсцисс и путем сжатия в k раз (при k>1) или растяжения в k раз (при 0 1) или растяжения в k раз (при 0">





    Слайд 1

    Тема: Свойства тригонометрических функций. Цели урока: 1. Повторить тему «Исследование функций». 2. Систематизировать знания о свойствах тригонометрических функций. 3. Развивать интерес к математике. 4. Воспитывать уважение друг к другу. 5. Воспитание культуры поведения в общественном месте. 5klass.net

    Слайд 2

    Сегодня на уроке я приглашаю вас посетить «Математическое кафе». Каждой паре предлагается сесть за отдельный столик (девушка и парень). Всем посетителям «Математического кафе» предлагается меню, которое состоит из холодных закусок, первого, второго и третьего блюда и десерта.

    Слайд 3

    Холодные закуски. Кроссворд «Математические термины»Задание: Необходимо вставить пропущенные буквы, если в каждой строке есть только первая и последняя буквы слова.

    Слайд 4

    Первые блюда. Сформулировать или дать определение каждому свойству функции 1) f(- x) = f(x) 2) f(x) = f(x – T) = f(x + T) 3) f(- x) = - f(x) 4). Если x2 > x1, то f(x2) > f(x1) 5). Точки максимума и минимума функции 6). Промежутки, в которых функция принимает либо положительные значения, либо принимает отрицательные значения 7). Если x2 > x1, то f(x2)

    Слайд 5

    Гимнастика для глаз

    Зажмурьте глаза, откройте глаза (повторите 5 раз) Сделайте круговые движения глазами, головой не вращая (повторите 10 раз).

    Слайд 6

    Прочитайте график функции

  • Слайд 7

    Вторые блюда.

    Чтение графика функции (можно использовать схему исследования графика функции). Схема исследования функции: Область определения функции Область значений функции Четность или нечетность, периодичность функции Пересечение графика функции с осями координат Промежутки знакопостоянства функции Промежутки возрастания и убывания функции Точки экстремума функции, вид экстремума (максимум или минимум), значения функции в этих точках

    Слайд 8

    Физкультминутка

    Исходное положение – стоя, руки опущены вниз. На счет «раз» - поднять руки вверх, подняться; на счет «два» - вернуться в исходное положение (повторить 5 – 6 раз). Исходное положение – стоя, руки опущены вниз. На счет «раз» - поднять правую руку вверх, левую ногу отставить назад, прогнуться; на счет «два» - вернуться в исходное положение; на счет «три» - поднять левую руку вверх, отставить правую ногу назад, прогнуться; на счет «четыре» - вернуться в исходное положение (повторить 5 – 6 раз).

Cлайд 1

Cлайд 2

Содержание Введение................................................... .......3-5слайд Начало изучения..............................................6-7 слайд Этапы изучения...................................................8 слайд Группы функций...................................................9 слайд Определение и график синуса..........................10 слайд Определение и график косинуса......................11 слайд Определение и график тангенса.......................12 слайд Определение и график котангенса...................13 слайд Обратные тр-ие функции.........................................14 слайд Основные формулы.............................................15-16 слайд Значение тригонометрии..........................................17 слайд Используемая литература........................................18 слайд Автор и составитель..................................................19 слайд

Cлайд 3

В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд». Со временем в нее начали вкрапляться некоторые аналитические моменты. В первой половине 18-го века произошел резкий перелом, после чего тригонометрия приняла новое направление и сместилась в сторону математического анализа. Именно в это время тригонометрические зависимости стали рассматриваться как функции. Это имеет не только математико-исторический, но и методико-педагогический интерес.

Cлайд 4

В настоящее время изучению тригонометрических функций именно как функций числового аргумента уделяется большое внимание в школьном курсе алгебры и начал анализа. Существует несколько различных подходов к преподаванию данной темы в школьном курсе, и учитель, особенно начинающий, легко может запутаться в том, какой подход является наиболее подходящим. А ведь тригонометрические функции представляют собой наиболее удобное и наглядное средство для изучения всех свойств функций (до применения производной), а в особенности такого свойства многих природных процессов как периодичность. Поэтому их изучению следует уделить пристальное внимание.

Cлайд 5

Кроме того, большие трудности при изучении темы «Тригонометрические функции» в школьном курсе возникают из-за несоответствия между достаточно большим объемом содержания и относительно небольшим количеством часов, выделенным на изучение данной темы. Таким образом, проблема этой исследовательской работы состоит в необходимости устранения этого несоответствия за счет тщательного отбора содержания и разработки эффективных методов изложения данного материала. Объектом исследования является процесс изучения функциональной линии в курсе старшей школы. Предмет исследования - методика изучения тригонометрических функций в курсе алгебры и начала анализа в 10-11 классе.

Cлайд 7

Тригонометрические функции - математические функции от угла. Они важны при изучении геометрии, а также при исследовании периодических процессов. Обычно тригонометрические функции определяют как отношения сторон прямоугольного треугольника или длины определённых отрезков в единичной окружности. Более современные определения выражают тригонометрические функции через суммы рядов или как решения некоторых дифференциальных уравнений, что позволяет расширить область определения этих функций на произвольные вещественные числа и даже на комплексные числа.

Cлайд 8

В изучении тригонометрических функций можно выделить следующие этапы: I. Первое знакомство с тригонометрическими функциями углового аргумента в геометрии. Значение аргумента рассматривается в промежутке (0о;90о). На этом этапе учащиеся узнают, что sin, сos, tg и ctg угла зависят от его градусной меры, знакомятся с табличными значениями, основным тригонометрическим тождеством и некоторыми формулами приведения. II. Обобщение понятий синуса, косинуса, тангенса и котангенса для углов (0о;180о). На этом этапе рассматривается взаимосвязь тригонометрических функций и координат точки на плоскости, доказываются теоремы синусов и косинусов, рассматривается вопрос решения треугольников с помощью тригонометрических соотношений. III. Введение понятий тригонометрических функций числового аргумента. IV. Систематизация и расширение знаний о тригонометрических функциях числа, рассмотрение графиков функций, проведение исследования, в том числе и с помощью производной.

Cлайд 9

Существует несколько способов определения тригонометрических функций. Их можно подразделить на две группы: аналитические и геометрические. К аналитическим способам относят определение функции у = sin х как решения дифференциального уравнения f (х)=-c*f(х) или как сумму степенного ряда sin х = х - х3 /3!+ х5 /5! - … 2. К геометрическим способам относят определение тригонометрических функций на основе проекций и координат радиус-вектора, определение через соотношения сторон прямоугольного треугольника и определения с помощью числовой окружности. В школьном курсе предпочтение отдается геометрическим способам в силу их простоты и наглядности.

Cлайд 10

Определение синуса Синусом угла х называется ордината точки, полученной поворотом точки (1; 0) вокруг начала координат на угол х (обозначается sin x).

Cлайд 11

Определение косинуса Косинусом угла х называется абсцисса точки, полученной поворотом точки (1; 0) вокруг начала координат на угол х (обозначается cos x).

Cлайд 12

Определение тангенса Тангенсом угла х называется отношение синуса угла х к косинусу угла х.

Cлайд 13

Определение котангенса Котангенсом угла х называется отношение косинуса угла х к синусу угла х.

Cлайд 14

Обратные тригонометрические функции. Для sin х, cos х, tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x»), arcos x, arctg x и arcctg x.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графики тригонометрических функций Функция у = sin x, ее свойства Преобразование графиков тригонометрических функций путем параллельного переноса Преобразование графиков тригонометрических функций путем сжатия и расширения Для любознательных…

тригонометрические функции Графиком функции у = sin x является синусоида Свойства функции: D(y) =R Периодическая (Т=2 ) Нечетная (sin(-x)=-sin x) Нули функции: у=0, sin x=0 при х =  n, n  Z y=sin x

тригонометрические функции Свойства функции у = sin x 5. Промежутки знакопостоянства: У >0 при х   (0+2  n ;  +2  n) , n  Z У

тригонометрические функции Свойства функции у= sin x 6. Промежутки монотонности: функция возрастает на промежутках вида:  -  /2 +2  n ;  / 2+2  n   n  Z y = sin x

тригонометрические функции Свойства функции у= sin x Промежутки монотонности: функция убывает на промежутках вида:  /2 +2  n ; 3  / 2+2  n   n  Z y=sin x

тригонометрические функции Свойства функции у = sin x 7. Точки экстремума: Х мах =  / 2 +2  n , n  Z Х м in = -  / 2 +2  n , n  Z y=sin x

тригонометрические функции Свойства функции у = sin x 8 . Область значений: Е(у) =  -1;1  y = sin x

тригонометрические функции Преобразование графиков тригонометрических функций График функции у = f (x +в) получается из графика функции у = f(x) параллельным переносом на (-в) единиц вдоль оси абсцисс График функции у = f (x)+а получается из графика функции у = f(x) параллельным переносом на (а) единиц вдоль оси ординат

тригонометрические функции Преобразование графиков тригонометрических функций Постройте график Функции у = sin(x+  /4) вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций y =sin (x+  /4) Постройте график функции: y=sin (x -  /6)

тригонометрические функции Преобразование графиков тригонометрических функций y = sin x +  Постройте график функции: y =sin (x -  /6)

тригонометрические функции Преобразование графиков тригонометрических функций y= sin x +  Постройте график функции: y=sin (x +  /2) вспомнить правила

тригонометрические функции Графиком функции у = cos x является косинусоида Перечислите свойства функции у = cos x sin(x+  /2)=cos x

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f (x) получается из графика функции у = f(x) путем его сжатия в k раз (при 0

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y=sin2x y=sin4x Y=sin0.5x вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) получается из графика функции у = f(x) путем его растяжения в k раз (при 0

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y = cos2x y = cos 0.5x вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения Графики функций у = -f (kx) и у=- k f(x) получаются из графиков функций у = f(kx) и y= k f(x) соответственно путем их зеркального отображения относительно оси абсцисс синус – функция нечетная, поэтому sin(-kx) = - sin (kx) косинус –функция четная, значит cos(-kx) = cos(kx)

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y = - sin3x y = sin3x вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y=2cosx y=-2cosx вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx+b) получается из графика функции у = f(x) путем его параллельного переноса на (-в /k) единиц вдоль оси абсцисс и путем сжатия в k раз (при k>1) или растяжения в k раз (при 0

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения Y= cos(2x+  /3) y=cos(x+  /6) y= cos(2x+  /3) y= cos(2(x+  /6)) y= cos(2x+  /3) y= cos(2(x+  /6)) Y= cos(2x+  /3) y=cos2x вспомнить правила

тригонометрические функции Для любознательных… Посмотрите как выглядят графики некоторых других триг. функций: y = 1 / cos x или y=sec x (читается секонс) y = cosec x или y= 1/ sin x читается косеконс


По теме: методические разработки, презентации и конспекты

ЦОР «Преобразование графиков тригонометрических функций» 10-11 классы

Раздел учебной программы:«Тригонометрические функции».Тип урока:цифровой образовательный ресурс комбинированного урока алгебры. По форме изложения материала:Комбинированный (универсальный) ЦОР со...

Методическая разработка урока по математике:«Преобразование графиков тригонометрических функций»

Методическая разработка урока по математике: «Преобразование графиков тригонометрических функций» для учащихся десятого класса. Урок сопровождается презентацией....